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Abstract: We present a model for rhythm organization based on 
partitions of integer numbers. Firstly, we introduce a simple notation 
for coding rhythm patterns in terms of partitions. With this we present 
an analysis of rhythm patterns in Ligeti’s Musica Ricercata IV for 
Piano.  We show that, with few exceptions, Ligeti used the partitions 
of number 6 to get rhythm variations on the right hand against a 
balanced ostinato on the left hand. In addition, we show the 
usefulness of the so called Hasse Diagram, which can be used as a 
formal pre-compositional device for rhythm patterns. 
Keywords: Musica Ricercata. Rhythm Patterns. Number 
Partitioning. Class of Equivalence.  
 
Título: Uma abordagem de partição de número para ritmo e sua 
aplicação à análise de Musica Ricercata 4 de Ligeti 
Resumo: Apresentamos um modelo de organização rítmica 
baseado em partições de números inteiros. Indicamos uma notação 
simples para a codificação de padrões de ritmo em termos de 
partições e as aplicamos em uma análise dos padrões rítmicos na 
Musica Ricercata IV, para piano, de Ligeti. Mostramos que, com 
poucas exceções, Ligeti usou as partições do número 6 para obter 
variações de ritmo na mão direita contra um ostinato equilibrado na 
mão esquerda. Além disso, mostramos a utilidade do chamado 
Diagrama de Hasse, que pode ser usado como um dispositivo 
formal pré-composicional para padrões rítmicos. 
Palavras-chave: Musica Ricercata. Padrões rítmicos. Partição de 
números. Classe de equivalência. 

 

1. Introduction 
Around the early 1950s, a period of great political repression in 

Hungary under the pro Soviet regime, Ligeti composed music which had no 
opportunity to be performed due to strong censorship. So, the fate of his 
Musica Ricercata (MR) was a “bottom drawer” (Steinitz, 2003). This set of 
eleven short pieces for piano contains a “minimalist program” of composition, 
with an increasing number of allowed pitches for each piece culminating with 
the last one in an idiosyncratic” twelve-tone type” approach even before Ligeti 
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had any acquaintance with their protagonists. Recently, D. Grantham 
(Grantham, 2014) made an extensive study of macrostructures of all MR 
movements, mainly through a descriptive analysis. In this work we are most 
interested in a finer structure of Rhythm Patterns of Musica Ricercata 4, more 
specifically, on the right hand rhythm figurations against the almost ubiquitous 
rhythm pattern of the left hand ostinato shown in Figure1. Ligeti himself pointed 
out the structural importance of rhythm construction in all movements of 
Musica Ricercata (Steinitz, 2003).  

 

Fig. 1 – Ostinato Cell: a balance between F♯ − A and G − B♭. 

In this short piece, Ligeti uses a chromatic selection of five pitches, 
namely {F♯, G, G♯, A, B♭}. 

2. Partitioning and Rhythmic Coding of Musica Ricercata IV 
Consciously or not, he also used a number of rhythm patterns which 

can be classified, up to some few exceptions, as partitions of the number 6. 
Partitions of a natural number n, which we denote by (𝑛) is the set of all ways 
(order not include) to write n as a sum of positive integers (Andrews, 1976). A 
simple example is given by  

𝛷(4) 	= 	 {1 + 1 + 1 + 1, 1 + 1 + 2, 1 + 3, 2 + 2, 4}. The number of 
elements of 𝛷(𝑛) we denote 𝑃(𝑛). So, 𝑃(4) = 	5. Applications of partitions of 
natural numbers to musical analysis and composition were extensively studied 
by Gentil-Nunes (2010). For 𝑛 = 6 the number of partitions is 𝑃(6) = 11, which 
is easy to check. Now, the number 6 is the best choice in order to apply Theory 
of Partitions to the rhythm space Ligeti explores in this piece. This is because 
our analysis takes into account bars and beats in a fixed time signature. 
Musically we use the idea of partition of a natural number in a particular way: 
we code rhythm figures, notes and rests in units of eighth note, as follows:  

  
and so on. The correspondent rests have the same value with negative sign. 
A whole note has value 8 and a sixteenth note is represented by the fractional 
value 1/2 and its correspondent rest by -1/2, and so on. However, these 
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fraction values are exceptions in our approach using partitions of integer 
numbers. 

From this coding it is easy to see the right hand bars, from bar 1 to 60, can be 
coded as small lists of integer numbers with the duration values as above. 
Each small list corresponds to a bar, since we are interested in the rhythm 
variety of the right hand against that one of the left hand ostinato. The following 
section, bars 61-97, is just a repetition of bars 2 to 37 and, therefore, isn’t 
necessary for our analysis. While the rhythmic ostinato cell of the left hand is 
a balanced pattern |2 2 2|, the right hand sequence of list is more varied:  

 
Fig. 2 – Rhythm Coding of Musica Ricercata’s Right Hand 

Observe that, due to the time signature, our choice of the eight note 
as time unit, implies 𝑛	 = 	6 for each bar with few exceptions. If we choose a 
quarter note, we must take 𝑛 = 3, but this implies too many fractions in the 
representation and thus partitions don’t apply anymore. On the other hand 
taking a sixteenth note as time unit implies 𝑛 = 12 and 𝑃(12) = 77 whose 
correspondent set of rhythm patterns is much larger than necessary for the 
analysis of a rhythmically simple piece as MR4 is. So we think 𝑛 = 6 is the 
optimal choice for MR4. In our analysis the calculations of partitions do not 
take into account the difference between note and rest, that is, partitions mean 
only the division of a measure in time intervals using an integer number of time 
units. Of course, most works don’t fit entirely this requirement and, as 
mentioned above, some fractional numbers appear as we can see in Figure 2. 
It is possible to circumvent this problem by using a shorter time unit but this 
implies a bigger number to be partitioned and thus the number of partitions 
becomes greater, making rhythm analysis more complex and, in some cases, 
leading to no meaningful information. So, we consider these cases of fractional 
numbers as exceptions, as there are only a few of them.  

3. A Partitioning Based Rhythm Analysis of MR 4  
As is the case in the previous movements of Musica Ricercata, it is the 

superposition of rapid changing rhythms in the right hand against an ostinato 
in the left hand that makes its construction interesting, even using just five pitch 
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classes. Observe that, due to most bars having a time signature of 3/4, the 
sum of the durations of figures within them, including notes and rests, is 6, 
according to our coding. Ligeti got great rhythm variety by taking different 
combinations of notes and rests whose durations sum up 6 as shown in Figure 
2. In fact, in MR4 Ligeti used 8 partitions out of 11 possible, namely  

{1 1 1 1 1 1}, {2 1 1 1 1}, {4 1 1}, {2 2 2}, {3 2 1}, {4 2}, {3 1 1 1}, {6}  

Those not appearing in the score are: {2 2 1 1}, {3 3}, {5 1}.  

 

Fig. 3 – Bars 41 to 44 with code lists |6 |−222 | 6 | −2 1 −1 −1 1| for the right hand. 

Negative values in the lists denote rest durations, and taking this into 
account the real number of possibilities of rhythm patterns can be greater. For 
example, if in a partition 𝑛 = 𝑎4 + 𝑎5 + ⋯+ 𝑎7 we allows each element to be 
note (positive value) or rest (negative value) the number of possible 
permutations (rhythm patterns)  is, a priori,  𝑝 = 27. Of course, due to element 
repetitions in some partitions, the rhythm patterns can be less than p. 

On the other hand, in contrast with rhythm patterns, partitions are non-
ordered sets of numbers. It’s easy to see that each partition above has a 
different number of possible associated rhythm patterns, obtained just making 
permutations between numbers. Formally, each partition is a class of 
equivalence of rhythm patterns under permutation operation. For example, if 
we have a partition of a number 𝑛 = 𝑎4 + 𝑎5 + ⋯+ 𝑎7 we can make 𝑘! 
permutations of correspondent rhythms associated with it. Other combinatorial 
operations can be done on the partition and new rhythms can be generated. 
Of course, Ligeti made use of just a small set of possible rhythm patterns which 
are representatives of classes of equivalence. Interesting works can be 
constructed using even just one class of partitions as, for example, Steve 
Reich’s Clapping Music: he uses just (restricted) cyclical permutations of the 
rhythm vector. In binary code it reads [1 1 1 0 1 1 0 1 0 1 1 0] where 1 means 
a note and 0 a rest. It can be rewritten as [3 2 1 2], just counting the consecutive 
notes (there are no consecutive rests), adding up to 8. In Clapping Music Reich 
uses just 12 out of 𝑃(8) = 22 possible partitions. In terms of composition Reich 
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uses an explicit algorithm (left shifts of the rhythm pattern) and Ligeti, as much 
as we know, none.  

Now, in rhythm analysis an important question is about the distribution 
and hierarchy of the rhythm patterns along a piece. Our approach in this work, 
in order to meet this requirement, consists of introducing a kind of taxonomy 
which is naturally attained by defining an order in the set of rhythm patterns 
here represented by their correspondent partitions. So the order (taxonomy) is 
defined for partitions of a number. This can be gotten through the so-called 
Hasse Diagram of partitions of a number (Zhao, 2008). The following definition 
provides a partial order on partitions. 

Partial Order on Partitions (Zhao) Suppose that 𝑥 =
(𝑥4, 𝑥5, … , 𝑥?)	and 𝑦 = (𝑦4, 𝑦5, … , 𝑦A)	are partitions of n. Then 𝑥 dominates 𝑦, 
written 𝑥	 ⊵ 𝑦 if 

𝑥4 +	𝑥5 …+	𝑥C 	≥ 	𝑦4 +	𝑦5 …+ 𝑦C	
	

for all 𝑖	 ≥ 	1. If  𝑖	 > 	𝑟 (respectively, 𝑖	 > 	𝑠), then we take 𝑥C	(respectively, 𝑦C) 
to be zero. This partial order is also named Dominance Order. 

As an example, by the above definition, we have  {3	3} ⊵ {3,2,1}. 
Nevertheless,  it’s not possible to compare {3	3} with {4	1	1} since the 
inequality fails in both cases of comparison. In this case, we say the partitions 
are independent of each other. The Hasse Diagram shows the dominance and 
independence of all partitions as shown in Figure 4 for the case of number 𝑛 =
6 which we use for the analysis of MR4. The dominance is represented by an 
arrow. Observe that the Hasse Diagram for our case of note (or rest) durations 
is obtained through augmentation from bottom to top. On the other hand, from 
top to bottom we have a fragmentation of rhythm patterns. 
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Fig. 4 – Hasse Diagram for number 6 (Gentil-Nunes 2009). 

Following the sequence of partitions for MR4 (as shown in in Figure 2) 
through Hasse Diagram we find they go through three different sections of the 
diagram: the first one, at the very outset, its rhythm pattern corresponds to the 
highest element and suddenly moving to the least one. The middle section has 
great variation of rhythm patterns, which corresponds to a quasi-chaotic path 
through the central part of the diagram. In the third and last section rhythm 
patterns concentrate partially at the bottom and middle parts of the diagram 
but return to its highest parts and ending with partitions {4 2}. So the rhythm 
patterns show a kind of ABCA’ form. Finally, observe that there are 13 out of 
60 bars with full rest. This makes the left hand Ostinato be placed in the 
forefront for the listener. 
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4. Some Examples of Rhythm Pattern Generation  
In this section we show a simple example how the above method can 

be used as a compositional tool to generate rhythm patterns. Firstly, observe, 
as mentioned above, that Ligeti didn’t use all the partitions of 6 in MR4. In fact, 
a composition using partitions of a large number is likely to explore just a small 
subset of the partitions. In order to fix such a subset, the composer can use 
constraints of different kinds, such as symmetry, or even random choices. This 
economy in terms of rhythm patterns implies, in general, more complexity for 
other musical parameters. In this case the model of rhythm partitions is of little 
use. Its power is most revealed when the composer intends to use a bunch of 
varied rhythms. Below we present some examples of rhythm patterns 
generated with concatenation and superposition of partitions. 

Consider 𝑛 = 8. The number of partitions is 𝑃(8) = 22 and its Hasse 
Diagram is shown in Figure 5. Observe that from the bottom to the top, as well 
from right to left, the nodes growth by augmentation. Since partitions are non-
ordered sets, and rhythm is an ordered set of durations we are free to include 
permutations on any node (rhythm partition) as well as accentuation. In 
addition, as we did for Music Ricercata 4 in Figure 2, we can include rests 
taking negative values in any partition and its permutations.  

 
Fig. 5 – Hasse Diagram for Partitions of 8 
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Figure 6 shows an example of concatenation of partitions at the 
extreme limits of Hasse Diagram, namely: [11111111] in the first two bars and 
[8] in the third one. We’ve taken an eighteenth note as a time unit.  

 

Fig. 6 – Using extreme partitions [11111111] and [8] at the edge of Hasse Diagram. 
 

Figure 7 shows an example using permutations of partitions from two 
branches of the Hasse Diagram where the values in a partition count the 
distance, in time units (in this example, an eighteen note), between chords.   

 
Fig. 7 - Polyrhythm using different branches of Hasse Diagram. The last two 

Viola and Cello’s bars are permutations of the first one. 

Many other examples can be constructed using the method of time 
organization above for musical structures in a score. However, observe that 
for large numbers the set of partitions has too many elements and so there is 
no point to analyze works with small rhythm variability.  

5. Conclusions and Perspectives 
We presented above an extension of Gentil-Nunes approach to 

analysis and composition based on Partitions of an integer number. 
Complementing Gentil-Nunes approach which uses partitions exploring a set 
of notes we’ve applied to the horizontal dimension of time, that is, rhythm.  That 
approach can be useful in order to search patterns from a score. In fact, the 
method can be applied to search patterns in time organization of musical 
structures. However, it is important to stress that our method may not represent 
the actual rhythm on the score since in our analysis, for example, some 
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artificial breaks are needed to accommodate partitions, as showed in our 
analysis of Ligeti’s Musica Ricercata 4. Nevertheless, this can be thought of 
as a second order rhythm organization. On the other hand, it’s possible to 
generalize the above method just measuring distance, in time units, between 
structures. These could be vertical such as notes, chords, clusters; horizontal 
such as tuplets, melodic patterns, or even between any kind of blocks with 
arbitrary vertical and horizontal extensions. In addition, it is also possible to 
extend the method by defining distance between accentuations and 
techniques applied on structures when appropriated.  

The simple examples above show the joint studies of partitions of 
numbers and associate classes of equivalence under permutations can be a 
useful tool for analysis and composition of rhythm patterns in many other works 
of music.  
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